
The Tor Project: Tor Weather 1

The Tor Project: Tor Weather
About me

Name Sarthik Gupta

Email sarthikg@gmail.com

Mobile Number +91-8872425152

Location Chandigarh, India - IST (UTC +5:30)

Work Software Engineer at Soroco

Education B.Tech (2021) in Civil Engineering from Punjab Engineering College, India

Website https://sarthikg.com

Resume https://sarthikg.com/resume.pdf

Github https://github.com/sarthikg

Matrix @sarthikg:matrix.org

Introduction
Hi, I am Sarthik Gupta, a recent graduate from Punjab Engineering College, Chandigarh
who just completed his B.Tech - Civil Engineering in 2021. For a long-time, I have been
on a look-out for tools to express my ideas, and my first exposure to programming drew
all my interest into it.

So, the journey started in 2018. As a self-taught developer, I explored languages, fields,
possibly everything that I could. During this time, I worked as a full-time Business
Analyst Intern for 6 months, and finally picked up a full-time position as a Software
Engineer where I am working for the past 8 months.

After these 14 months of corporate experience, I still feel there is plethora to learn out
there. In the past, I have made some attempts to participate in the open-source
community, but for some reason, I couldn’t find it easy to enter. There were issues I

https://soroco.com/
https://sarthikg.com/
https://sarthikg.com/resume.pdf
https://github.com/sarthikg

The Tor Project: Tor Weather 2

raised, and asked if I could raise a PR for the fix, but before I received a reply, one of
the maintainers fixed the issue.

Recently, I came to know that GSoC expanded its horizons beyond college students,
and I was super excited when I heard about. I could finally see a way to step in the
world of open-source & contribute to such amazing tools that we use almost daily in our
lives without even realising.

Project Information

Project Abstract
The Tor-Weather project aims at creating a notification service upon which the relay
operators can rely upon for incidents & updates of their relay nodes. The relay operators
will finally feel that someone actually cares about their effort of running the nodes.

As a regular user of tor, and an advocate of privacy, the tor project was always a project
I would have loved to contribute to. While glancing through the GSoC projects, Tor-
Weather caught my eye as it was very similar to something I had worked on before.

The idea of Tor-Weather isn’t new, and has been attempted at-least 3 times before this
GSoC, and unfortunately didn’t work out in either of them. This time around, I aim at
joining it as a long-term maintainer even after GSoC, but also making it rather easy to
maintain and easy for developers to contribute to.

A service is as good as its promotion among the target user-group. With this in mind, I
believe that there should be as little friction from using the service as possible. This
includes, advertising the service among relay operators, but also preventing the
targeted spam the service could introduce. For this reason, its best to send a Thank You
email to the old relay operators, and a Welcome email to all the new one’s which
advertises tor-weather, while also providing an email-verification system to prevent
spam.

In-terms of the tech-stack, I think for an open-source project its best to go with
something that is popular among developers & easy to contribute to. For this reason, I
chose a micro-service architecture with Flask as the backend.

By the end of the GSoC, I aim at creating a tor-weather service that is able to:

1. Send notifications to the subscribed relay operators upon incidents.

The Tor Project: Tor Weather 3

2. Provide a web-frontend for users to signup and tinker with the notification
preferences.

3. Send welcome emails to the newly onboarded relay operators.

4. An admin-flow that allows the admins to push high-priority emails to the relay
operators.

5. Perform all the above operations in future even without a developer actively
maintaining it.

Project Description
Tor-Weather is a notification service which helps relay operators get notified when some
incident happens with their relays. The service has 2 major functions:

1. To provide notifications on possible incidents with the relays

2. To incentivise relay operators for their work

It is an essential project for the tor network as it aims at keeping the network updated &
running at all times by making sure the operators are well aware of the status of their
relays. The project has been undertaken multiple times in the past, which includes:

1. Tor-Weather (2010 Version)

2. Tor-Weather (2014 GSoC Version)

3. Tor-Weather (Unofficial Version)

Unfortunately, none of the implementations were continued for a long period due to a
lack of maintenance. This year, the project has again been chosen to be a part of
GSoC, and I feel confident that this would be the final implementation.

Fundamental Architecture
For the new implementation of Tor-Weather, there were a few available options for the
user-flow :

1. Subscribe users from the the ContactInfo field from torrc

Pros:

1. ContactInfo field from the torrc will work exactly as intended.

https://gitweb.torproject.org/weather.git/tree/weather/weatherapp
https://github.com/meejah/tor-weather
https://github.com/thingless/torweather
https://manpages.debian.org/jessie/tor/torrc.5

The Tor Project: Tor Weather 4

2. Greatly reduces the friction from using Tor-Weather

Cons:

1. The email provided in the ContactInfo is obfuscated in most of the cases as
they should be according to the torrc documentation. Hence this information
cannot be relied upon.

2. Spam can be introduced if someone creates multiple relays with the victim’s
email-id. We cannot verify this information, hence the spam is unavoidable.

3. The service subscribes relay-operators for the updates without their consent.
This will cause a lot of them to flag the emails as spam, which will cause email
providers like Gmail, Outlook, etc to mark our email server as spam.

2. Create an entirely separate signup-flow

Pros:

1. Reduces the chances of spamming when integrated with an email-verification
user-flow.

2. Users can subscribe to updates of relays which don’t necessarily have their
ContactInfo in their torrc’s.

Cons:

1. High friction from using Tor-Weather.

2. No way for the users to know that such a service exists which they can
subscribe to.

3. The ContactInfo field is rendered useless

3. Hybrid approach using ContactInfo to advertise Tor-Weather & a separate
user-flow

Pros:

1. Advertisement of Tor-Weather happens among existing relay operators (at
initiation) & among newly joined relay operators.

2. Reduced chances of spamming when integrated with an email-verification user-
flow.

3. Less friction from using tor-weather

https://manpages.debian.org/jessie/tor/torrc.5

The Tor Project: Tor Weather 5

4. Less probability of emails getting marked as spam.

5. The ContactInfo field is partially used for the purpose it was intended for.

Cons:

1. ContactInfo field cannot be completely used, as the text is still obfuscated in
some cases.

Post this preliminary research, the approach-3 seemed like the best approach to go
with. Hence I did some research to calculate how much of an impact the only con could
have:

Total number of relays = 7576 (as of 15th April 2022)

Percentage of relays with no ContactInfo = 20-21%

Percentage of relays without obfuscated email = 34% of relays with ContactInfo

Percentage of relays with parsable obfuscation = 84%-85% of relays with
ContactInfo

The last figure of relays that had a parsable email obfuscation was done with a small
program which was scribbled in a few minutes that tried to replace the common
obfuscations like “[at]” with “@” upon small observation of data. This program can be
accounted for about 10% of error cases, which still holds up for 74-75% of emails that
were readable. Upon further improvement, this can be improved to about 90%
readability rate.

Taking into account the current percentage of emails that could be read from the
ContactInfo field, the launch of Tor-Weather will be broadcasted to about 4500-5000
relay operators out of the total of about 7500, which seems like a good surface area to
begin with. Hence, the approach-3 should be the best suited approach.

Technical Design Considerations
There were a few options available for the technical design of the Tor-Weather. Some of
them were:

1. Should data be fetched from Onionoo or Stem?

The previous implementation of Tor-Weather (2014 version) used Stem for the
purpose of knowing the status of relays on the tor network.

The Tor Project: Tor Weather 6

What is Stem?

Stem is a python controller library for tor. It was launched in 2013, and has been last
updated in 2019. Stem could be used by projects which planned on making multiple
requests querying the status of the tor-network, as it promoted to run a relay and
query status from the local relay. This prevented projects from overburdening the
network.

What is Onionoo?

Onionoo is a web-based protocol for applications to query the status of the tor-
network. It was a service primarily designed for applications that presented data in a
human-readable format. Onionoo was launched in 2014, and was last updated in
2020.

Conclusion

It seems like Stem was used in the 2014 implementation of Tor-Weather since
Onionoo was a very recent service back then, while Stem was still there for about a
year, and hence was more stable. In-terms of development, using Stem doesn’t
seem to have any advantages over Onionoo as Stem is less-maintained, and will be
relatively hard to setup and contribute to by a developer. Currently, the unofficial tor-
weather implementation also relies on Onionoo, and it seems like Onionoo should
be the way to go since the number of queries executed by our application should be
relatively small, and Onionoo should be able to easily handle them.

2. What should be the best tech-stack for the project?

Personally, I believe there is never any “best tech-stack” available. With the ever-
evolving tools & technologies, we can choose the one which is common and,
popular enough that it doesn’t become a roadblock for any developer to contribute
to. Keeping that in mind, the two possible programming languages available at our
disposal should be:

1. Python

Python has been very famous among developers, be it for the purpose of
backend, or data analysis. For the backend, there are 2 major options available:

a. Django (Framework)

Django was used previously in the Tor-Weather (2014 Version) and is
tried & tested before.

https://stem.torproject.org/
https://metrics.torproject.org/onionoo.html
https://github.com/thingless/torweather

The Tor Project: Tor Weather 7

Django comes with many services inbuilt like an ORM, Email Service,
etc which can be extremely useful in our case.

A framework makes it really hard for contributors unaware of the
framework to contribute.

b. Flask (Library)

Flask gives the freedom of being a library and users knowing python
can easily contribute to it.

Some functionality will have to be imported from other libraries which
could have been available out-of-the-box incase of Django.

2. JavaScript

JavaScript is also very popular among developers as it can be used for both
frontend & the backend. Though, during the initial conversation with my mentor,
it seemed like the organisation didn’t prefer using javascript for various reasons.
So dropping the option of using it.

Taking into account the available options and their pros & cons, it seems that Flask
will be a better fit. Django even though used previously and providing extensive out-
of-the-box features, limits the subset of developers who can contribute to it, which is
a major factor when opting for an open-source project.

3. What is the code reusability from the previous implementations?

Code-reusability from the previous implementations shouldn’t be a direct copy/paste
effort as the data source is changing. Though, the previous codebases can be
used/referred for:

a. Structuring the application

b. Email Templates used in the previous versions

c. Database structure & authentication management

d. Default conditions under which various subscriptions were triggered

4. What would be the maintenance effort?

The planned structure of the application is to move from a monolithic architecture to
a micro-service architecture. This should have the following benefits:

The Tor Project: Tor Weather 8

a. Maintenance effort will greatly reduce as small services will handle separate
responsibilities.

b. Contributing to the project will be easier for developers as complexity is divided
among the application.

c. Security will be greatly improved & will demand less effort as there will be few
public facing systems.

d. Adding features in the application will be easier as new services can be
introduced. This also opens door for using different technologies for different
services in the future.

e. Few services can be deployed as FAAS (Function as a Service) which will also
reduce server costs.

Email Notifications
1. Email me when my node is down - Here we should decide how long before we

send a notification?

A notification is triggered when the relay is down for X time. The time before a
notification is triggered will be a configurable value that the relay operator can set in
the web-frontend. Though, for getting started, there will be a default value of say
4hrs.

Implementation

The proposed database design currently supports this feature. The option needs to
be added in the web-frontend, and will work with the python scripts accordingly.

2. Email me when my relay is affected by a security vulnerability

A notification is triggered when the relay is affected by a security vulnerability.
Currently, this feature will rely on the the version information. Incase of specific
outdated versions, a notification will be sent to all the relay operators with relays on
that specific outdated version.

Implementation

The proposed admin screen will have an option for the admins to release a
notification for the relays on a specific version. This will execute a one-time script

The Tor Project: Tor Weather 9

notifying all the relay operators having a relay operating on that specific version. In
the current implementation, this will be a manual effort for a more granular control,
but the idea of automating this will be discussed with the team.

3. Email me when my relay runs an end-of-life version of tor

A notification is triggered when the relay is running an “end-of-life” version of tor.
The end-of-life version will correspond to the “obsolete” version from the Onionoo
data.

Implementation

The proposed database design currently supports this feature. Every hour, upon the
execution of python scripts, there will be a notification rolled out for the relays
running on end-of-life version of tor. A mechanism for making sure each relay
operator is notified only once for a relay is also taken care of.

4. Email me when my relay runs an outdated tor version

This notification is similar to the one for the “end-of-life” version, but will be fired
when a new version of the tor is available.

Implementation

Implementation of this notification will be based out on the data from the Onionoo.
The version_status field contains the relevant data for fetching the latest version of
the tor. The proposed database design is capable of handling notifications for this
use-case.

5. Email me when my relay loses the stable/guard/exit flag

This notification is triggered whenever the relay loses any of the stable/guard/exit
flag.

Implementation

The proposed database design supports this functionality. The Onionoo data
contains data for the flags, and comparing with the earlier state of flags in the
database, a notification will be fired whenever a flag is missing.

The Tor Project: Tor Weather 10

6. Email me when my MyFamily configuration is broken

This notification is triggered whenever a relay exits a MyFamily configuration.

Implementation

The proposed database design supports this functionality. Upon execution of the
python script (happens every hour), the existing relays in the MyFamily will be
compared with the new set of relays in the MyFamily. If any relay is lost, a
notification is fired.

7. Email me with suggestions for configuration improvements for my relay

This notification is triggered when the configuration of a relay can be improved in
some possible way.

Implementation

The application can have a set of configurations (best practices). The configuration
of relays as available from Onionoo can be compared with these best practices, and
a notification can be triggered with the possible steps to mitigate the issue. The
proposed database design does not support this feature, but with further
communication, an ideal way of handling such a use-case can be proposed and
implemented.

8. Email me when my relay is on the top 20/50/100 relays list

Whenever a relay is a part of the top 20/50/100 relays, a notification is triggered for
the subscribers of that relay.

Implementation

Relays can be ranked on different metrics. The best metrics for the use-case are
advertised_bandwidth & consensus_weight . A discussion with the team is necessary for
deciding among these & an approach for handling this will hence be implemented.

9. Email me with monthly/quarterly status information, e.g what is my position in
the overall relay list, how much traffic did my relay do during the last month,

The Tor Project: Tor Weather 11

etc...

This notification is triggered every month notifying the relay operators of metrics like
the position of their relays, the overall bandwidth handled by their relays.

Implementation

A python script for this functionality can be scheduled to run every month by the
crontab. The corresponding data for this notification is available from Onionoo
directly, hence notifications can be sent to the relay operators. A discussion with the
team is required for an option of changing the preferences for this type of
notification before implementing it.

10. Email me about new relay requirements

This notification is triggered for the new relays recently joining the tor-network for
the relevant requirements of a relay.

Implementation

This notification can be triggered once a new relay is registered on the tor-weather.
A static email for basic requirements for new relays could be mailed to the
operators. The complete specifications outlining the use-case will be discussed with
the team before implementing it.

11. Email me about tor relay operator events

This notification will be triggered to the tor-operators when an event for tor operators
is upcoming.

Implementation

In the first phase, this notification can be manually triggered by the admins from the
admin dashboard, but a discussion for automating the process will be done while
exploring the possible ways for handing event invites.

The Tor Project: Tor Weather 12

System Design

The design for the tor-weather app will follow a micro-service architecture where the
backend will be a completely separate entity from the scripts. Let’s dive deep in the
architecture:

1. Python Script

a. Python scripts will be handling the main logic for the status of the tor-network.

b. Crontab will be invoking the Python scripts every fixed interval (1hr in this case).

c. Once triggered, the script will fetch the status of the network from the Onionoo
API.

d. With the previous state of the network already available in the database, the
script will send relevant email notifications to the relay operators while updating
the relay data in the database.

The Tor Project: Tor Weather 13

2. Backend (Flask)

a. The backend primarily focuses on user-centric tasks like sign-in, sign-up,
changing frequency/parameters for notifications, unsubscribing, etc.

b. Backend will fetch this data from the database & will serve server-rendered
templates to the client.

c. It will also handle the form-submissions from the user, and will modify the user
preferences accordingly.

3. Database (Postgres)

a. PostgreSQL is being used for the database since its a stable & highly popular
SQL database that’s also open-source.

b. The database will be preserved between the application states, and shouldn’t
be a part of the deployment script.

4. SMTP Server

a. The SMTP Server will be used to send emails to the relay operators.

b. Both the backend & the script can trigger emails. The credentials will be a part
of the shared environment file, and hence can be used by both of them.

c. The mail-server used for sending these emails could be built from scratch or a
3rd party mail-server could be utilised. The pros & cons for each of them are:

i. Self made mail-server:

1. It will provide us the functionality to send emails which are potentially
free (only the server charges will be applicable).

2. A mail-server requires port-25 to be unlocked, which is extremely
difficult as most ISP’s have blocked it to prevent spam.

3. There will be an extensive effort in building out the mail-server, as
improvements will be required for raising the mail score (preventing our
emails from landing into the spam folder.)

ii. Third-party mail-server:

1. Third party mail servers will provide the stability & will abstract away the
hardships of managing a mail-server.

The Tor Project: Tor Weather 14

2. A minor cost will be incurred upon sending emails as most of the
companies charge per mail.

3. The prior implementations also relied upon a 3rd party mail-server
whose credentials were used in the application for sending mails.

d. A third-party mail-server seems better in the short-term, and will be preferring
that to start with. Though, post the GSoC period, an effort (major) can be spent
on hosting a self-made mail-server as our project heavily uses email.

5. Web-Interface

a. The web-interface for the tor-weather can be created on a subdomain of tor if
permitted, or on an entirely separate domain.

b. Relay operators can directly land here by accessing the link & logging in.

c. Relay operators can also land on the web-interface from the link in the emails
(includes welcome, thank-you, or notification emails).

Database Design

The Tor Project: Tor Weather 15

A preliminary design for database was created for the application. This is subjective to
changes upon further communication. A document explaining each column & its usage
is available here.

Bi-Weekly Timeline
Community Bonding (May 20 - June 12)
1. Connect with the Tor Team and get onboarded on the relevant platforms.

2. Discuss the proposal with the team & look for possible improvements or changes.

3. Take relevant courses / read documentation of the new technologies being used.

4. Initiate the repository, database & setup the environments for crontab, smtp, etc.

5. Get better understanding of the working of the tor network.

Week - 1 & Week - 2 (June 13 - June 26)
1. Write relevant models for the API, database responses. Also define input & output

parameters for the functions.

2. Develop user-flow including sign-in, sign-up, email-verification, authorisation,
unsubscribe including basic frontend templates, backend routes & email-templates.

Week - 3 & Week - 4 (June 27 - July 10)
1. Initiate development of the python script to fetch data from onionoo & modify the

data in the database.

2. Write email templates for the subscription notifications & get them integrated with
the python script.

Week - 5 & Week - 6 (July 11 - July 24)
1. Complete the development of the python script & test its working with some mock-

data on the mock-database.

2. Initiate the development for changing the preferences of the subscription services.
This includes basic frontend templates & backend routes for the same.

https://sarthikg.com/gsoc/database_design.pdf

The Tor Project: Tor Weather 16

Week - 7 & Week - 8 (July 25 - Aug 07)
1. Complete the development for changing the preferences of the subscription

services & test its working with some mock-data on the mock-database.

2. Initiate the process of styling the frontend with the relevant design specifics as
provided in the Tor Styleguide.

Week - 9 & Week - 10 (Aug 08 - Aug 21)
1. Complete the styling of the frontend for all the pages across the application. This

includes designing & implementing the designs.

2. Initiate the process of writing basic unit tests for the functionality across the
application. This includes the backend & the python scripts.

Week - 11 & Week- 12 (Aug 22 - Sept 04)
1. Complete the process of writing tests. Will discuss the consideration of writing end-

to-end tests for the application with the time available.

2. Fix any bugs, edge-cases left across the application during the development
process.

3. If time permits, develop the admin workflow for some high-level functionality like
releasing a notification for all the relay operators incase a security vulnerability is
found.

Final Week (Sept 05 - Sept 12)
1. Write documentation for all the pieces of the project including the backend, scripts &

the database.

2. If time permits, automate the process of deployment using tools like Docker or
Vagrant.

Post GSoC Period (After Sept 12)
1. Continue fixing bugs & adding features to the application.

2. Become a maintainer for the tor-weather project while also contributing to other
projects at the organisation.

https://styleguide.torproject.org/

The Tor Project: Tor Weather 17

How can I be a good fit?
During my internship, I got a chance to develop an application from the ground-up that
had a very similar structure to the proposed tor-weather app. I developed a News-
Dashboard application which also followed a micro-service architecture approach.

There were multiple python scripts that fetched data from multiple news sources at
regular intervals as managed by the crontab. These news-articles were compared with
the one’s already present in the database, and were ranked based on recency. Next,
there was a backend written in Express that served static files (EJS & CSS) to the
frontend. The app did support user-authentication, but at that time, it was mostly done
with an external library.

For a personal project, I developed a module to handle the authentication, authorisation
of users using JWT’s which was mostly written from scratch. For the same project, I
developed another module to handle the email flow from a personal email server.

In my current job, I am developing a design-system with multiple components ready for
out-of-the-box consumption. A preview of which is available here. This helped me get a
really good hand at styling the websites.

I feel confident that my past endeavours have helped me get a hands-on experience in
almost every part of the proposed application, and I should be able to complete this
project successfully within the GSoC timeline.

https://storybook.soroco.com/

The Tor Project: Tor Weather 18

Commitments & Availability
This is a medium-sized project, and I aim to provide at-least 15hrs a week to this
project. During the project period, my commitments includes a full-time job which takes
around 40hrs per week. During the program, my availability for this project will be:

Weekdays - 08:00PM - 12:00AM (GMT +5:30)

Weekends - 11:00AM - 6:00PM (GMT +5:30)

